유사도 내적 계산은 벡터 간의 유사도를 측정하는 한 가지 방법입니다. 벡터는 숫자들의 배열로 이루어진 개념으로, 예를 들면 [1, 2, 3]과 같이 나타낼 수 있습니다. 벡터 간의 유사도는 두 벡터가 얼마나 비슷한지를 나타내는 척도로 사용됩니다.
유사도 내적 계산은 두 벡터의 대응하는 요소들을 각각 곱한 뒤 그 결과들을 모두 더하여 유사도 값을 구합니다. 이러한 연산을 요소별 곱(또는 Hadamard 곱)과 합으로 표현할 수 있습니다.
두 벡터 A와 B의 유사도 내적 계산은 다음과 같습니다:
유사도 내적 값 = Σ(A[i] * B[i]) for i = 0 to N-1
여기서 N은 벡터의 차원을 의미하며, A[i]와 B[i]는 각 벡터의 i번째 요소를 나타냅니다.
유사도 내적 계산은 머신러닝, 자연어 처리 등 다양한 분야에서 중요한 개념으로 활용됩니다. 예를 들어, 어텐션 메커니즘에서는 쿼리와 키 간의 유사도 내적을 사용하여 중요한 정보를 찾고, 벡터 간의 유사도 내적 값을 비교하여 유사성을 평가하는데 활용됩니다.