토큰화(Tokenization)와 임베딩(Embedding)

토큰화(Tokenization)와 임베딩(Embedding)은 자연어 처리(Natural Language Processing) 분야에서 다른 개념을 가리키는 용어입니다.

1. 토큰화(Tokenization):
– 텍스트를 작은 단위로 나누는 과정입니다. 이 작은 단위는 보통 단어, 문장, 문자 등의 단위일 수 있습니다.
– 예를 들어, “Hello, how are you?”라는 문장을 토큰화하면 [“Hello”, “,”, “how”, “are”, “you”, “?”]와 같이 토큰(단어 또는 문자) 단위로 분리됩니다.
– 토큰화를 통해 텍스트를 작은 단위로 분리하여 기계가 처리 가능한 형태로 만들 수 있습니다. 이후에 각 토큰에 대해 숫자나 인덱스로 변환할 수 있습니다.

2. 임베딩(Embedding):
– 단어나 문장 등의 토큰을 숫자로 변환하는 과정입니다. 토큰을 고차원의 벡터 공간에 매핑하는 것을 의미합니다.
– 임베딩은 단어의 의미와 특징을 반영한 밀집 벡터로 표현합니다. 각 차원은 단어의 특정한 의미적 측면을 나타내며, 단어 간의 관계와 유사성을 벡터 공간 상에서 반영합니다.
– 예를 들어, “apple”이라는 단어를 100차원의 임베딩 공간에 매핑하면 [0.5, 0.8, -0.2, …]와 같이 실수값을 갖는 벡터로 표현할 수 있습니다.
– 임베딩을 통해 텍스트의 특징을 수치화하고, 이를 기반으로 기계학습 모델이 텍스트를 처리하고 학습할 수 있습니다.

요약하자면, 토큰화는 텍스트를 작은 단위로 나누는 과정이고, 임베딩은 토큰을 숫자로 변환하여 텍스트의 의미와 특징을 벡터로 표현하는 과정입니다. 토큰화는 전처리 과정의 일부로써 텍스트를 분리하는 역할을 하며, 임베딩은 토큰화된 텍스트를 숫자 형태로 표현하여 기계학습 모델에 입력으로 사용합니다.

일반적으로 텍스트 처리 작업에서는 토큰화(Tokenization)를 먼저 수행한 후에 임베딩(Embedding)을 적용합니다.

1. 토큰화(Tokenization): 텍스트를 작은 단위로 나누는 과정을 의미합니다. 이 단위는 보통 단어, 문장, 문자 등이 될 수 있습니다. 토큰화를 통해 텍스트를 토큰 단위로 분리합니다.

2. 임베딩(Embedding): 토큰화된 텍스트를 숫자로 변환하여 기계가 이해할 수 있는 형태로 만듭니다. 이 과정에서 토큰은 벡터로 매핑되며, 벡터의 차원은 임베딩 공간의 크기를 결정합니다. 임베딩은 주로 사전 훈련된 워드 임베딩 모델을 사용하거나, 모델 내부에서 학습하는 방식으로 수행됩니다.

따라서, 일반적인 순서는 토큰화를 먼저 수행한 후에 임베딩을 적용합니다. 토큰화된 텍스트는 임베딩에 입력되어 벡터로 변환됩니다. 이렇게 변환된 임베딩 벡터는 텍스트의 의미와 특징을 반영하여 모델에 입력될 수 있습니다.

토큰화를 먼저 수행한 후에 임베딩을 적용하는 이유는 다음과 같습니다:

1. 단어 수준의 특성을 보존: 토큰화는 단어 단위로 텍스트를 분리하여 의미 있는 단위로 만듭니다. 이는 단어의 의미와 문맥을 유지하면서 텍스트를 분석할 수 있도록 합니다. 따라서, 토큰화를 먼저 수행하면 단어 수준의 특성을 보존할 수 있습니다.

2. 임베딩의 입력 형태: 대부분의 임베딩 모델은 단어를 입력으로 받아 해당 단어에 대한 임베딩 벡터를 반환합니다. 따라서, 토큰화를 통해 단어로 분리된 텍스트를 임베딩 모델에 입력으로 전달할 수 있습니다.

3. 임베딩의 차원 일관성: 임베딩은 텍스트를 고정된 차원의 벡터로 변환하는 작업입니다. 이 때, 토큰화를 먼저 수행하여 단어 단위로 분리하면, 모든 단어에 동일한 임베딩 차원을 적용할 수 있습니다. 이는 모델의 일관성을 유지하고 효과적인 처리를 가능하게 합니다.

따라서, 토큰화를 먼저 수행한 후에 임베딩을 적용하는 것은 텍스트의 구성 단위를 보존하고, 임베딩 모델에 일관된 입력을 제공하기 위한 일반적인 접근 방식입니다.

SentencePiece 라이브러리 – 텍스트입력을 숫자로 쉽게 바꿔주는 토큰제작 오픈소스 라이브러리

SentencePiece는 Google에서 개발한 오픈 소스 라이브러리로, 텍스트 데이터를 효율적으로 토큰화하기 위해 사용됩니다. SentencePiece는 단어나 음절 단위 등 다양한 기준으로 텍스트를 토큰으로 분할할 수 있으며, 주로 자연어 처리 작업에서 언어 모델링, 기계 번역, 텍스트 분류 등에 활용됩니다.

SentencePiece의 주요 특징과 기능은 다음과 같습니다:

1. **Subword 기반 분할**: SentencePiece는 단어 수준이 아닌 subword 수준에서 텍스트를 분할합니다. 이를 통해 미등록어(out-of-vocabulary)나 희귀한 단어에 대한 효과적인 처리가 가능합니다. 또한, 다양한 언어의 특성을 고려하여 유연한 토큰화 방식을 제공합니다.

2. **양방향 토큰화**: SentencePiece는 양방향 토큰화(Bidirectional Tokenization)를 지원합니다. 이는 앞뒤 문맥을 동시에 고려하여 토큰을 생성하므로, 문맥 정보가 보존되는 장점이 있습니다.

3. **유니코드 지원**: SentencePiece는 다양한 유니코드 문자를 지원하며, 다국어 텍스트에 대한 효율적인 처리가 가능합니다.

4. **학습 데이터 생성**: SentencePiece는 기존의 텍스트 데이터로부터 토크나이저 학습 데이터를 생성할 수 있는 기능을 제공합니다. 이를 통해 사용자 정의 토크나이저를 학습할 수 있습니다.

5. **사전 크기 제어**: SentencePiece는 사용자가 지정한 사전 크기를 제한하여 메모리 사용량을 조절할 수 있습니다. 이를 통해 대규모 데이터셋에 대한 효율적인 토큰화 처리가 가능합니다.

SentencePiece는 다양한 프로그래밍 언어에서 사용할 수 있으며, Python에서는 `sentencepiece` 라이브러리를 통해 쉽게 활용할 수 있습니다. SentencePiece를 통해 텍스트를 효율적으로 토큰화하면, 자연어 처리 작업에서 높은 성능과 유연성을 기대할 수 있습니다.