구글 바드(BARD)와 ChatGPT의 근본적인 차이점 – 구글 바드는 도구를 활용한다.

구글 BARD와 ChatGPT의 근본적인 차이점은 다음과 같습니다:

1. 모델 기반:

ChatGPT는 오픈AI에서 개발한 GPT 시리즈의 언어 모델로, 트랜스포머(Transformer) 논문에서 제안된 아키텍처에 기반을 두고 있습니다. 트랜스포머는 시퀀스 투 시퀀스(Sequence-to-Sequence) 모델을 개선한 구조로, 주로 자연어 처리 작업에서 뛰어난 성능을 보입니다.

반면에 BARD는 구글이 발표한 LaMDA(Language Models for Dialog Applications) 논문에 기반을 두고 있습니다. LaMDA는 대화형 언어 모델에 대한 연구로, ChatGPT와는 다른 모델 아키텍처와 접근 방식을 가지고 있습니다. 따라서 BARD와 ChatGPT는 각각 다른 기반과 특징을 가진 언어 모델입니다.

 

2. 도구를 활용하는 바드: BARD는 효율적인 사실 확인과 숫자 계산을 위해 툴셋(Tool Set, TS)을 사용합니다. LaMDA-Base 모델은 예비 답변을 생성하는 역할을 하고, LaMDA-Research 모델은 인터넷 검색, 번역 및 계산 도구와 협력하여 정확한 답변을 생성합니다.

아래 그림은 람다 논문에 나온 툴셋활용 예시 그림입니다.

“에펠탑은 언제 지어졌니?”라는 유저 질문에 답을 하는 LaMDA 작동 예시입니다.

3. 답변 검증: LaMDA-Research 모델은 이전에 생성된 답변을 검증하고 외부 툴셋이 필요한 경우 해당 도구에 질문과 답변을 제출합니다. 이를 통해 BARD는 더 정확한 답변을 제공할 수 있습니다. ChatGPT는 이와 달리 내부적으로 사실 확인 및 검증을 수행하지 않습니다.

요약하면, BARD는 LaMDA 논문을 기반으로 하며, 툴셋을 활용하여 사실 확인과 숫자 계산의 효율성을 높입니다. 이에 반해 ChatGPT는트랜스포머 모델을 기반으로 하며, 사실 확인과 숫자 계산에 제한이 있을 수 있습니다.

언어모델의 완전 이해 강의 !

트랜스포머 모델로 GPT만들기

 

언어모델을 이용해 향가를 번역 시켜 보았다. – chatgpt vs deepL 번역 비교

프람프트

아래 글을 해석해줘.
처용가
삼국유사 권제2, 처용랑 망해사, ‘역신을 감복시킨 처용’ 中#
(원문)
東京明期月良
夜入伊遊行如可
入良沙寢矣見昆
脚烏伊四是良羅
二兮隐吾下於叱古
二兮隐誰支下焉古
本矣吾下是如馬於隐
奪叱良乙何如爲理古

chatgpt

해석을 위해 주어진 글을 분석하면서 일부 판단을 내려야 합니다. 주어진 글은 한자와 음역된 문자로 이루어져 있고, 문맥이 불분명하여 정확한 해석이 어렵습니다. 주어진 글은 ‘처용가’라는 제목 아래에 있는 것으로 보이지만, 문장 구조와 의미 파악에 어려움이 있습니다. 따라서, 이 문장을 정확히 해석하는 것은 어려운 일입니다.

해석에 도움이 될 수 있는 정보를 더 제공해주시면, 보다 정확한 도움을 드릴 수 있을 것입니다.

:한자와 음역된 문자로 이루어져 있다는 것은 파악하고 있다.

그래서 번역의 예시를 보여 주었다.

프람프트

東京明期月良 夜入伊遊行如可 入良沙寢矣見昆 脚烏伊四是良羅 二兮隐吾下於叱古 二兮隐誰支下焉古 本矣吾下是如馬於隐 奪叱良乙何如爲理古 (양주동 해) ᄉᆡᄫᆞᆯ ᄇᆞᆯ긔 ᄃᆞ래 밤드리 노니다가 드러ᅀᅡ 자리 보곤 가ᄅᆞ리 네히어라 둘흔 내 해엇고 둘흔 뉘 해언고 本ᄃᆡ 내 해다마ᄅᆞᆫ 아ᅀᅡᄂᆞᆯ 엇디 ᄒᆞ릿고 (현대어 해석) 서라벌 밝은 달에 밤 들어 노니다가 들어와 잠자리 보니 다리가 넷이어라 둘은 내 것인데 둘은 누구의 것인고 본디 내 것이다마는 앗아간 것을 어찌 하리오

chatgpt

주어진 문장을 현대어로 해석하면 다음과 같습니다:

서라벌 밝은 달에
밤 들어 노니다가
들어와 잠자리 보니
다리가 넷이어라
둘은 내 것인데
둘은 누구의 것인가
본디 내 것이다마는
앗아간 것을 어찌 하리오

해석:
서라벌 밝은 달이 떠오르는 때에
밤에 들어가 잠을 자러 갔다가
들어와서 잠자리를 보니
다리가 네 개로 이루어져 있다
둘은 내 것인데
둘은 누구의 것인가
사실은 내 것이지만
빼앗긴 것을 어떻게 해야 하리오

위 문장은 형식적인 한자와 음역된 문자가 혼용된 어법으로 작성되어 있습니다. 전체 문장이 일관된 의미를 갖지 않으며, 문장 구조와 의미 파악에 어려움이 있습니다. 따라서, 위 해석은 일부 추측과 판단을 포함하고 있을 수 있으므로 정확한 의미를 전달하기 위해서는 추가적인 정보가 필요합니다.

 

deepL 번역

도쿄의 좋은 달
나이트 퍼레이드
료자에서 뵙겠습니다
늑대의 네 발은 량 뤄입니다.
두 사람은 나에게서 숨겨져있다
세상에서 가장 좋은 사람은 누구입니까?
이것은 어둠 속의 말과 같습니다.
량 B의 꾸지람을 빼앗은 이유는 무엇입니까?

 

결론: 향가와 같은 새로운 형태의 언어번역은 chatgpt가 우월하다.

 

 

문장 생성은 토큰을 예측하는 것

문장 생성은 토큰을 예측하는 과정입니다. 트랜스포머 모델은 주어진 입력 시퀀스를 기반으로 다음 토큰을 예측하여 문장을 생성합니다.

문장 생성은 디코더 부분에서 이루어지며, 이전에 생성된 토큰을 입력으로 받아 다음 토큰을 예측합니다. 디코더는 자기 회귀적인 특성을 가지고 있어 이전 단계에서 생성한 토큰을 입력으로 사용하여 다음 토큰을 예측하는 작업을 반복합니다.

문장 생성을 위해 디코더는 어텐션 메커니즘을 사용하여 입력 시퀀스의 다양한 부분을 참조하고, 다음 토큰에 대한 확률 분포를 계산합니다. 일반적으로 확률 분포에서 가장 높은 확률을 가진 토큰을 선택하여 다음 단계의 입력으로 사용합니다. 이런 과정을 반복하여 원하는 길이의 문장을 생성할 수 있습니다.

문장 생성은 자연어 처리 작업에서 중요한 역할을 합니다. 트랜스포머 모델은 문장 생성을 통해 기계 번역, 요약, 대화 시스템 등 다양한 응용 분야에서 활용됩니다.

트랜스포머 모델의 일반적인 과정: 1 전처리, 2아키텍처 구성, 3예측 및 학습, 4후처리, 5 평가 및 추론

트랜스포머 모델의 일반적인 과정은 다음과 같습니다:

1. 데이터 전처리: 입력 데이터를 모델이 처리할 수 있는 형태로 변환합니다. 이 단계에는 텍스트 데이터의 토큰화, 임베딩, 패딩 등이 포함될 수 있습니다. 전처리는 모델에 입력되는 데이터의 형식을 맞추고, 필요한 정보를 추출하거나 변환하는 역할을 합니다.

2. 모델 아키텍처 구성: 트랜스포머 모델의 아키텍처를 구성합니다. 이는 입력 데이터와 출력 데이터의 차원, 임베딩 크기, 레이어의 개수, 어텐션 메커니즘의 유형 등을 정의하는 단계입니다. 트랜스포머 모델은 인코더와 디코더로 구성되며, 각각은 여러 개의 트랜스포머 블록으로 이루어져 있습니다.

3. 예측 및 학습: 전처리된 데이터를 모델에 입력하여 예측과 학습을 수행합니다. 모델은 입력 시퀀스의 다음 단어를 예측하거나 원하는 작업을 수행합니다. 예측과 학습 단계에서는 트랜스포머 모델의 다양한 레이어와 메커니즘이 활용되며, 학습 데이터를 통해 모델의 가중치가 업데이트됩니다.

4. 후처리: 모델의 출력을 원하는 형태로 변환하거나 활용하는 단계입니다. 이는 디코딩, 인덱싱 연산, 다항분포 샘플링 등을 포함할 수 있으며, 모델의 출력을 자연어로 표현하거나 다른 작업에 활용할 수 있도록 합니다.

5. 평가 및 추론: 훈련된 모델을 사용하여 평가나 추론을 수행합니다. 평가는 모델의 성능을 측정하고 개선하는 과정을 의미하며, 추론은 새로운 입력에 대해 모델이 예측을 수행하는 과정을 의미합니다.

트랜스포머 모델의 일반적인 과정은 위와 같이 전처리, 아키텍처 구성, 예측 및 학습, 후처리, 평가 및 추론으로 이루어집니다. 이러한 과정을 반복하면서 모델을 훈련하고 개선하여 원하는 작업에 대해 좋은 성능을 발휘할 수 있도록 합니다.

트랜스포머 모델의 주요 후처리 과정

트랜스포머 모델의 주요 후처리 과정은 다음과 같습니다:

1. 누적확률 계산 (Cumulative Probability Calculation): 트랜스포머 모델은 언어 모델링이나 기계 번역과 같은 작업에서 다음 단어의 확률 분포를 출력합니다. 이 확률 분포를 사용하여 각 단어에 대한 누적확률을 계산할 수 있습니다. 누적확률은 다음 단어를 선택하는 과정에서 사용되며, 확률 값들을 누적하여 선택 확률 분포를 생성합니다.

2. 다항분포 샘플링 (Multinomial Distribution Sampling): 다항분포는 주어진 범주(카테고리)의 확률 분포를 모델링하는데 사용됩니다. 트랜스포머 모델의 출력으로부터 다항분포 샘플링을 수행하여 다음 단어를 선택할 수 있습니다. 이는 다음 단어 예측 등의 작업에서 사용됩니다. 다항분포 샘플링은 누적확률 값을 기반으로 각 범주의 확률에 따라 샘플을 추출하는 과정입니다.

3. 인덱싱 연산 (Indexing Operation): 트랜스포머 모델의 출력은 일반적으로 단어 또는 토큰에 대한 확률 분포로 표현됩니다. 이 확률 분포에서 다음 단어를 선택하기 위해 인덱싱 연산을 수행할 수 있습니다. 인덱싱 연산은 확률 분포에서 가장 높은 확률을 가진 단어를 선택하거나, 특정 위치의 값을 추출하는 등의 작업에 사용됩니다.

4. 디코딩 (Decoding): 트랜스포머 모델은 입력 시퀀스에 대한 출력을 생성합니다. 디코딩은 이러한 출력을 실제 단어나 문장으로 변환하는 과정을 말합니다. 이는 기계 번역이나 자연어 생성과 같은 작업에서 중요한 후처리 단계입니다. 디코딩은 인덱스를 단어로 매핑하거나, 특수 토큰 처리, 문장 정리 등의 작업을 포함합니다.

이러한 후처리 과정들은 트랜스포머 모델의 출력을 실제로 사용할 수 있는 형태로 변환하거나

, 다음 단어 선택 등의 작업에 활용됩니다. 이는 모델의 출력을 자연어로 표현하거나 다른 작업에 활용하기 위한 단계로 볼 수 있습니다.

트랜스포머 모델의 주요 전처리 과정

트랜스포머 모델의 전처리 과정은 다음 단계로 구성될 수 있습니다:

1. 토큰화(Tokenization): 입력 문장을 작은 단위로 분할하여 토큰으로 나누는 과정입니다. 토큰화는 문장을 단어, 문자, 형태소 등의 토큰 단위로 분할하는 작업을 의미합니다.

2. 토큰 인덱싱(Token Indexing): 토큰화된 각 토큰에 고유한 정수 인덱스를 할당하는 작업입니다. 각 토큰은 사전(Vocabulary)에 등재되어 있는지 확인하고, 등재된 토큰에는 해당하는 인덱스 값을 부여합니다.

3. 토큰 패딩(Token Padding): 모델의 입력으로 사용할 시퀀스의 길이를 일정하게 맞추기 위해 짧은 시퀀스에 패딩 토큰을 추가하는 작업입니다. 패딩 토큰은 일반적으로 특정 값으로 채워진 토큰으로 사용되며, 모델은 패딩 토큰을 무시하고 실제 입력에만 주로 초점을 둡니다.

4. 위치 인코딩(Positional Encoding): 토큰의 상대적인 위치 정보를 모델에 전달하기 위해 위치 인코딩을 수행합니다. 위치 인코딩은 입력 시퀀스의 각 토큰에 대해 고유한 벡터를 생성하여 위치 정보를 포함한 임베딩을 제공합니다.

5. 임베딩(Embedding): 토큰에 대한 밀집된 벡터 표현인 임베딩을 생성합니다. 임베딩은 단어, 문자 또는 형태소와 같은 토큰을 고차원의 실수 벡터로 매핑합니다. 이러한 임베딩은 모델이 입력의 의미와 특징을 파악할 수 있도록 돕습니다.

6. 입력 마스킹(Input Masking): 패딩 토큰의 영향을 제거하기 위해 입력 마스킹을 수행합니다. 마스크는 패딩 토큰의 위치를 표시하는 바이너리 마스크로, 모델은 마스크된 위치의 입력을 무시합니다.

이러한 전처리 단계는 토크나이저와 임베딩 레이어를 통해 자동으로 수행될 수 있으며, 입력 데이터를 모델에 적절한 형식으로 전달할 수 있도록 준비합니다. 이후에는 전처리된 데이터를 트랜스포머 모델에 입력으로 제공하여 학습 및 예측을 수행합니다.

음악의 토큰화와 다음 음악 예측

음악의 토큰화와 다음 음악 예측

음악의 토큰화는 음악을 작은 단위로 분할하고, 각 단위를 토큰으로 표현하는 과정입니다. 일반적으로 음악은 시간적인 흐름을 가지고 있기 때문에, 음악을 작은 시간 단위로 분할하여 토큰으로 표현합니다. 이러한 시간 단위는 예를 들면 음표, 악기 소리, 박자 등이 될 수 있습니다. 각 토큰은 숫자나 문자열과 같은 형태로 표현됩니다.

음악의 다음 음악 예측은 주어진 음악의 일부를 입력으로 받아, 다음에 나올 음표, 악기 소리, 박자 등을 예측하는 작업입니다. 이는 음악의 연속성과 음악적 패턴을 모델링하는 것을 목표로 합니다. 일반적으로는 시퀀스 모델링 기법을 활용하여 이 작업을 수행합니다. 입력으로는 이전에 나온 음악의 토큰 시퀀스를 사용하고, 출력으로는 다음 음악의 토큰을 예측하는 방식입니다.

음악의 토큰화와 다음 음악 예측은 음악 생성, 음악 자동 작곡, 음악 추천 등 다양한 응용 분야에서 사용됩니다. 이를 위해 음악 이론과 통계적 모델링, 머신 러닝 및 딥러닝 기법을 활용하여 음악의 특성을 모델링하고 예측하는 방법이 연구되고 있습니다.

음악모델의 정규화 방식

음악 모델의 정규화 방식은 모델의 학습 안정성과 일반화 능력을 향상시키기 위해 사용됩니다. 일반적으로 음악 모델에서 사용되는 정규화 방식은 다음과 같습니다:

1. 배치 정규화 (Batch Normalization): 배치 정규화는 음악 모델의 각 층에서의 입력을 정규화하는 기법으로, 미니배치 단위로 평균과 분산을 계산하여 입력을 조정합니다. 이를 통해 그레디언트 소실이나 폭주 문제를 완화하고, 학습 속도를 향상시킬 수 있습니다.

2. 드롭아웃 (Dropout): 드롭아웃은 음악 모델의 학습 시에 일부 뉴런을 임의로 제거하여 모델의 복잡도를 줄이고 과적합을 방지하는 방법입니다. 특히, 시퀀스 모델링에서는 시간적인 의존성을 학습하는데 도움을 줄 수 있습니다.

3. 가중치 정규화 (Weight Regularization): 가중치 정규화는 모델의 가중치를 제한하거나 제약을 가하는 방법입니다. L1 또는 L2 정규화와 같은 가중치 패널티를 적용하여 가중치의 크기를 제한하고, 모델의 복잡성을 조절할 수 있습니다.

4. 층 정규화 (Layer Normalization): 층 정규화는 음악 모델의 층 단위에서 입력을 정규화하는 방법입니다. 배치 차원이 아닌 피쳐 차원에서 평균과 분산을 계산하여 입력을 조정하며, 학습 안정성과 성능 향상에 도움을 줄 수 있습니다.

5. 데이터 증강 (Data Augmentation): 데이터 증강은 학습 데이터를 다양한 방법으로 변형하여 데이터의 다양성을 높이는 방법입니다. 음악 모델에서는 음악의 속도 조정, 피치 변화, 잡음 추가 등의 변형을 통해 데이터를 증강시킬 수 있습니다. 이를 통해 모델의 일반화 능력을 향상시킬 수 있습니다.

이 외에도 음악 모델에서는 다양한 정규화 방법을 활용할 수 있으며, 모델의 구조와 특성에 따라 적합한 방법을 선택하여 사용합니다. 정규화는 모델의 안정성과

일반화 능력을 향상시키는 중요한 요소이며, 음악 모델의 성능을 향상시키는데 기여할 수 있습니다.

음악모델의 주요 선형 변환

음악 모델에서 주로 사용되는 주요 선형 변환은 다음과 같습니다:

1. 완전 연결 층 (Fully Connected Layer): 완전 연결 층은 음악 모델의 입력과 출력을 연결하는 선형 변환입니다. 입력 벡터와 가중치 행렬의 곱셈과 편향을 더하는 연산으로 이루어집니다. 완전 연결 층은 음악 모델의 다양한 부분에서 사용되며, 입력과 출력의 차원을 조절하고 복잡한 비선형 관계를 모델링하는데 사용됩니다.

2. 합성곱 층 (Convolutional Layer): 합성곱 층은 음악 신호의 시간적인 특성을 학습하기 위해 사용됩니다. 주로 1D 합성곱이 사용되며, 입력 신호에 대해 커널을 슬라이딩하면서 합성곱 연산을 수행합니다. 합성곱 층은 음악의 시간적인 구조를 포착하고, 지연 및 시퀀스 모델링에서 효과적으로 사용됩니다.

3. 어텐션 층 (Attention Layer): 어텐션 층은 음악 모델에서 중요한 선형 변환입니다. 어텐션 메커니즘은 입력 시퀀스의 각 요소 간의 상호작용을 모델링하는데 사용됩니다. 어텐션 층은 음악의 구조를 이해하고 음악 요소 간의 관계를 학습하는데 도움을 줍니다. 주로 선형 변환과 스칼라 곱을 통해 가중합을 계산하는 형태로 사용됩니다.

4. 임베딩 층 (Embedding Layer): 임베딩 층은 음악 데이터를 고차원 벡터로 변환하는데 사용됩니다. 주로 단어 임베딩에서 많이 사용되는데, 음악에서는 음표, 악기, 음악 장르 등의 요소를 숫자 벡터로 임베딩합니다. 임베딩 층은 음악 데이터의 표현력을 향상시키고, 모델이 음악 특성을 학습할 수 있도록 도와줍니다.

이 외에도 음악 모델에서는 다양한 선형 변환을 사용할 수 있으며, 모델의 구조와 목적에 따라 다양한 변환을 조합하여 사용합니다. 이러한 선형 변환은 음악 데이터의 특성을 적절하게 모델링하고, 음악 생성, 분류, 변환 등 다양한 음악 관련 작업에 활용됩니다.

음악 모델의 주요 임베딩

음악 모델에서 주로 사용되는 주요 임베딩 작업은 다음과 같습니다:

1. 음표 임베딩 (Note Embedding): 음악에서 가장 기본적인 단위인 음표를 벡터로 임베딩하는 작업입니다. 음표 임베딩은 음악 모델이 음악의 멜로디, 리듬 등을 학습하고 생성하는 데 사용됩니다. 일반적으로 음표는 원-핫 인코딩으로 표현되며, 임베딩 층을 통해 고차원 벡터로 변환됩니다.

2. 악기 임베딩 (Instrument Embedding): 악기는 음악에서 사용되는 다양한 소리의 특성을 나타내는 요소입니다. 각 악기를 고유한 벡터로 임베딩하여 모델이 악기의 소리와 특성을 학습할 수 있도록 돕습니다. 이를 통해 악기 간의 차이를 모델이 구분하고, 음악 생성이나 악기 분류와 같은 작업에 활용할 수 있습니다.

3. 음악 장르 임베딩 (Genre Embedding): 음악은 다양한 장르로 분류될 수 있으며, 장르는 음악의 스타일과 특징을 나타냅니다. 음악 장르를 임베딩하여 모델이 음악의 장르적 특성을 학습하고, 장르 간의 차이를 이해할 수 있도록 돕습니다. 음악 생성, 분류, 추천 등의 작업에서 음악 장르 임베딩은 중요한 역할을 합니다.

4. 시간적 임베딩 (Temporal Embedding): 음악은 시간적인 특성을 가지고 있으며, 시간적 패턴은 음악의 구조와 리듬을 형성합니다. 시간적 임베딩은 음악의 시간 정보를 벡터로 표현하여 모델이 음악의 시계열적인 특성을 학습할 수 있도록 돕습니다. 이를 통해 모델은 음악의 구성, 변화, 반복 등을 파악하고 생성할 수 있습니다.

이 외에도 음악 모델에서는 다양한 요소를 임베딩할 수 있으며, 모델의 목적과 데이터 특성에 따라 필요한 임베딩 작업을 수행합니다. 임베딩은 음악 데이터를 고차원

벡터로 변환하여 모델이 음악을 이해하고 처리할 수 있도록 돕는 중요한 단계입니다.

토큰화(Tokenization)와 임베딩(Embedding)

토큰화(Tokenization)와 임베딩(Embedding)은 자연어 처리(Natural Language Processing) 분야에서 다른 개념을 가리키는 용어입니다.

1. 토큰화(Tokenization):
– 텍스트를 작은 단위로 나누는 과정입니다. 이 작은 단위는 보통 단어, 문장, 문자 등의 단위일 수 있습니다.
– 예를 들어, “Hello, how are you?”라는 문장을 토큰화하면 [“Hello”, “,”, “how”, “are”, “you”, “?”]와 같이 토큰(단어 또는 문자) 단위로 분리됩니다.
– 토큰화를 통해 텍스트를 작은 단위로 분리하여 기계가 처리 가능한 형태로 만들 수 있습니다. 이후에 각 토큰에 대해 숫자나 인덱스로 변환할 수 있습니다.

2. 임베딩(Embedding):
– 단어나 문장 등의 토큰을 숫자로 변환하는 과정입니다. 토큰을 고차원의 벡터 공간에 매핑하는 것을 의미합니다.
– 임베딩은 단어의 의미와 특징을 반영한 밀집 벡터로 표현합니다. 각 차원은 단어의 특정한 의미적 측면을 나타내며, 단어 간의 관계와 유사성을 벡터 공간 상에서 반영합니다.
– 예를 들어, “apple”이라는 단어를 100차원의 임베딩 공간에 매핑하면 [0.5, 0.8, -0.2, …]와 같이 실수값을 갖는 벡터로 표현할 수 있습니다.
– 임베딩을 통해 텍스트의 특징을 수치화하고, 이를 기반으로 기계학습 모델이 텍스트를 처리하고 학습할 수 있습니다.

요약하자면, 토큰화는 텍스트를 작은 단위로 나누는 과정이고, 임베딩은 토큰을 숫자로 변환하여 텍스트의 의미와 특징을 벡터로 표현하는 과정입니다. 토큰화는 전처리 과정의 일부로써 텍스트를 분리하는 역할을 하며, 임베딩은 토큰화된 텍스트를 숫자 형태로 표현하여 기계학습 모델에 입력으로 사용합니다.

일반적으로 텍스트 처리 작업에서는 토큰화(Tokenization)를 먼저 수행한 후에 임베딩(Embedding)을 적용합니다.

1. 토큰화(Tokenization): 텍스트를 작은 단위로 나누는 과정을 의미합니다. 이 단위는 보통 단어, 문장, 문자 등이 될 수 있습니다. 토큰화를 통해 텍스트를 토큰 단위로 분리합니다.

2. 임베딩(Embedding): 토큰화된 텍스트를 숫자로 변환하여 기계가 이해할 수 있는 형태로 만듭니다. 이 과정에서 토큰은 벡터로 매핑되며, 벡터의 차원은 임베딩 공간의 크기를 결정합니다. 임베딩은 주로 사전 훈련된 워드 임베딩 모델을 사용하거나, 모델 내부에서 학습하는 방식으로 수행됩니다.

따라서, 일반적인 순서는 토큰화를 먼저 수행한 후에 임베딩을 적용합니다. 토큰화된 텍스트는 임베딩에 입력되어 벡터로 변환됩니다. 이렇게 변환된 임베딩 벡터는 텍스트의 의미와 특징을 반영하여 모델에 입력될 수 있습니다.

토큰화를 먼저 수행한 후에 임베딩을 적용하는 이유는 다음과 같습니다:

1. 단어 수준의 특성을 보존: 토큰화는 단어 단위로 텍스트를 분리하여 의미 있는 단위로 만듭니다. 이는 단어의 의미와 문맥을 유지하면서 텍스트를 분석할 수 있도록 합니다. 따라서, 토큰화를 먼저 수행하면 단어 수준의 특성을 보존할 수 있습니다.

2. 임베딩의 입력 형태: 대부분의 임베딩 모델은 단어를 입력으로 받아 해당 단어에 대한 임베딩 벡터를 반환합니다. 따라서, 토큰화를 통해 단어로 분리된 텍스트를 임베딩 모델에 입력으로 전달할 수 있습니다.

3. 임베딩의 차원 일관성: 임베딩은 텍스트를 고정된 차원의 벡터로 변환하는 작업입니다. 이 때, 토큰화를 먼저 수행하여 단어 단위로 분리하면, 모든 단어에 동일한 임베딩 차원을 적용할 수 있습니다. 이는 모델의 일관성을 유지하고 효과적인 처리를 가능하게 합니다.

따라서, 토큰화를 먼저 수행한 후에 임베딩을 적용하는 것은 텍스트의 구성 단위를 보존하고, 임베딩 모델에 일관된 입력을 제공하기 위한 일반적인 접근 방식입니다.

트랜스포머 모델의 주요 임베딩 작업

트랜스포머 모델의 주요 임베딩 작업은 다음과 같습니다:

1. 단어 임베딩 (Word Embedding): 텍스트 입력을 단어 수준에서 숫자로 변환하는 작업입니다. 각 단어는 고정된 차원의 실수 벡터로 표현됩니다. 단어 임베딩은 단어 간의 의미와 유사성을 반영하여 단어의 분산 표현을 학습합니다.

2. 위치 임베딩 (Positional Embedding): 트랜스포머 모델은 입력 시퀀스의 단어 위치 정보를 임베딩하여 고려합니다. 위치 임베딩은 단어의 상대적인 위치에 따라 다른 임베딩 값을 가지며, 시퀀스 내 단어들의 순서 정보를 모델에 전달합니다.

3. 세그먼트 임베딩 (Segment Embedding): 트랜스포머 모델에서는 입력 시퀀스를 여러 개의 세그먼트로 분할하여 처리할 수 있습니다. 세그먼트 임베딩은 각 세그먼트를 식별하기 위해 사용되며, 각 세그먼트의 특성을 모델에 전달합니다.

4. 토큰 타입 임베딩 (Token Type Embedding): 입력 시퀀스에 여러 종류의 토큰이 포함되어 있을 때, 토큰의 타입을 구분하기 위해 사용됩니다. 예를 들어, 질문-응답 모델에서 질문과 응답의 토큰을 구분하기 위해 토큰 타입 임베딩을 사용할 수 있습니다.

이러한 임베딩 작업들은 트랜스포머 모델이 입력 데이터를 처리하고 이해하는 데에 중요한 역할을 합니다. 임베딩은 텍스트 데이터를 숫자로 변환하여 모델에 입력 가능한 형태로 만들어주며, 단어, 위치, 세그먼트, 토큰 타입 등 다양한 정보를 효과적으로 인코딩합니다. 이를 통해 모델은 입력 데이터의 구조와 의미를 파악하고 효과적인 특성 추출을 수행할 수 있습니다.

트랜스포머 모델의 주요 정규화 작업

트랜스포머 모델의 주요 정규화 작업은 다음과 같습니다:

1. 배치 정규화 (Batch Normalization): 배치 정규화는 미니배치의 각 층에서의 입력을 정규화하는 기법입니다. 이를 통해 각 층의 입력 분포를 안정화시키고, 그레디언트 소실 또는 폭주를 줄여 모델의 학습을 안정화시킵니다.

2. 층 정규화 (Layer Normalization): 층 정규화는 배치 단위가 아닌 층 단위에서의 입력을 정규화하는 기법입니다. 배치 정규화와 유사한 역할을 수행하지만, 배치 차원이 아닌 피쳐 차원에서 평균과 표준편차를 계산하여 정규화합니다.

3. 셀프 어텐션 정규화 (Self-Attention Normalization): 트랜스포머 모델의 셀프 어텐션 레이어에서 사용되는 정규화 기법입니다. 셀프 어텐션은 입력 시퀀스의 각 토큰 간의 상호작용을 모델링하는데 사용되는데, 이때 정규화를 통해 그레디언트의 안정성을 향상시킵니다.

4. 잔차 연결 (Residual Connection): 잔차 연결은 트랜스포머 모델의 각 레이어에서 입력과 출력 사이에 잔차 연결을 추가하는 기법입니다. 이를 통해 신경망의 깊이가 깊어져도 그레디언트 소실이나 폭주 문제를 완화할 수 있습니다.

이러한 정규화 작업들은 트랜스포머 모델의 학습 안정성과 성능 향상에 중요한 역할을 합니다. 각각의 정규화 기법은 입력 데이터의 분포를 조정하거나 그레디언트를 조절함으로써 모델의 학습을 안정화시키고, 더 나은 표현력을 갖는 특성을 추출할 수 있도록 도와줍니다.

 

*RMS (Root Mean Square) 정규화는 트랜스포머 모델의 주요 정규화 기법 중 하나로서 일반적으로 사용되는 것은 아닙니다. 이유는 다양한 정규화 기법들이 모델의 학습 안정성과 성능 향상을 위해 특정한 목적과 가정에 기반하고 있기 때문입니다.

RMS 정규화는 주어진 값들의 편차를 작게 만들면서도 값들의 의미를 유지하려는 목적으로 사용되는 것으로 이해됩니다. 그러나 이와 관련하여 트랜스포머 모델에서 널리 사용되는 특정한 정규화 기법으로는 앞서 언급한 배치 정규화, 층 정규화, 셀프 어텐션 정규화, 잔차 연결 등이 있습니다. 이러한 기법들은 모델의 학습 안정성, 그레디언트 흐름, 과적합 방지 등을 개선하는 데에 효과적으로 사용됩니다.

트랜스포머 모델에서는 RMS 정규화보다는 주로 위에서 언급한 다른 정규화 기법들이 더 일반적으로 사용됩니다. 그러나 정규화 기법의 선택은 모델의 구조, 데이터의 특성, 학습 목표 등에 따라 달라질 수 있으며, 특정한 문제나 실험 환경에서는 다양한 정규화 기법을 시도해보는 것이 좋습니다.