인코딩과 디코딩 – 정보를 변환하고 다시 원래의 형식으로 되돌리는것

이 개념은 샵투스쿨의 “트랜스포머 모델로 GPT만들기” 학습 중 수강생분들이 더 자세히 알고 싶어하시는 용어들을 설명한 것입니다.

인코딩과 디코딩은 일반적으로 상대적인 개념입니다.

인코딩은 일련의 데이터나 정보를 다른 형식으로 변환하는 과정을 의미합니다. 일반적으로 텍스트를 숫자로 인코딩하는 것이 많이 사용됩니다. 이렇게 인코딩된 숫자는 컴퓨터가 이해할 수 있는 형태로 변환됩니다. 예를 들어, 자연어 처리에서 자연어 문장을 원-핫 인코딩 또는 정수 인코딩을 통해 숫자 시퀀스로 변환하는 것이 인코딩의 일반적인 예입니다.

디코딩은 인코딩된 데이터나 정보를 다시 원래 형식으로 되돌리는 과정을 의미합니다. 인코딩된 숫자나 데이터를 다시 텍스트로 디코딩하는 것이 많이 사용됩니다. 예를 들어, 컴퓨터가 출력한 숫자 시퀀스를 자연어 문장으로 디코딩하거나, 이미지를 인코딩된 형식에서 원래의 이미지 형식으로 디코딩하는 것이 디코딩의 일반적인 예입니다.

따라서, 인코딩은 일련의 데이터를 다른 형식으로 변환하는 것이고, 디코딩은 인코딩된 데이터를 원래의 형식으로 변환하는 것입니다.

코드의 예

아래 코드에서 인코딩 작업을 하는 부분은 함수를 사용하고 있습니다.

 

prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]

위 코드는 `self.tokenizer.encode()` 함수를 호출하여 `prompts` 리스트의 각 요소를 인코딩하여 `prompt_tokens` 리스트에 저장하고 있습니다. `self.tokenizer.encode()` 함수는 주어진 텍스트를 숫자로 인코딩하는 기능을 수행합니다. 따라서 해당 코드에서는 함수를 사용하여 인코딩 작업을 수행하고 있습니다.

`prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]` 코드에서 `x`, `bos=True`, `eos=False`는 다음과 같은 의미를 갖습니다:

– `x`: `prompts` 리스트의 각 요소인 문자열을 나타냅니다. `x`는 각각의 프롬프트 텍스트를 의미합니다.
– `bos=True`: “Beginning of Sentence”의 약자로, 인코딩된 토큰 시퀀스의 시작 부분에 특별한 시작 토큰을 추가할지 여부를 나타냅니다. `bos=True`로 설정하면 시작 토큰이 추가됩니다.
– `eos=False`: “End of Sentence”의 약자로, 인코딩된 토큰 시퀀스의 끝 부분에 특별한 종료 토큰을 추가할지 여부를 나타냅니다. `eos=False`로 설정하면 종료 토큰이 추가되지 않습니다.

따라서 `self.tokenizer.encode(x, bos=True, eos=False)`는 `x`라는 문자열을 토크나이즈하고 인코딩된 토큰 시퀀스를 생성하는 과정에서 시작 토큰을 추가하고 종료 토큰을 추가하지 않는 것을 의미합니다.

시작 토큰을 추가하고 종료 토큰을 추가하지 않는 이유는 다양한 상황과 요구에 따라 다를 수 있습니다. 일반적으로는 다음과 같은 이유로 시작 토큰을 추가하고 종료 토큰을 추가하지 않을 수 있습니다:

1. 문장 생성의 일부로서 특정 문장의 시작을 나타내기 위함: 시작 토큰을 추가함으로써 모델은 특정 문장의 시작을 알 수 있고, 이를 활용하여 문장의 의미와 문맥을 이해하고 유지할 수 있습니다. 예를 들어, “나는”이라는 시작 토큰을 추가하면 모델은 이어지는 문장에서 “나는”에 대한 정보를 활용하여 적절한 문장을 생성할 수 있습니다.

2. 문장의 완성을 강제하지 않기 위함: 종료 토큰을 추가하지 않으면 모델은 텍스트를 계속해서 생성할 수 있습니다. 이는 특정 길이의 문장을 생성하기보다는, 원하는 만큼의 텍스트를 생성하거나 다른 조건에 따라 중단하고 싶을 때 유용합니다. 예를 들어, 텍스트 생성 중에 특정 조건을 만족할 때까지 생성을 계속하고자 할 때 종료 토큰을 추가하지 않을 수 있습니다.

3. 디코딩의 유연성을 높이기 위함: 종료 토큰을 추가하지 않으면 모델은 끝까지 텍스트를 자유롭게 생성할 수 있습니다. 이는 모델이 일정한 패턴이나 길이에 구속되지 않고, 더 다양하고 유연한 텍스트를 생성할 수 있도록 합니다. 종료 토큰을 추가하면 생성된 텍스트가 미리 정해진 길이에 도달하거나 종료 토큰을 만나면 멈추게 됩니다.

따라서 시작 토큰을 추가하고 종료 토큰을 추가하지 않는 것은 모델의 문장 생성을 유연하게 조절하고 다양한 상황에 적용할 수 있는 방법입니다. 실제 사용 시나리오에 따라 적합한 방식을 선택할 수 있습니다.

시작 토큰은 문장의 첫 부분으로 프롬프트에서 선별될 수도 있지만, 그렇지 않을 수도 있습니다. 시작 토큰은 모델의 입력 시퀀스에 추가되는 특수한 토큰으로서, 문장의 시작을 나타내는 역할을 합니다.

프롬프트에 따라 시작 토큰을 선택할 수 있습니다. 예를 들어, “나는”이라는 프롬프트가 주어졌을 때, 시작 토큰으로 “나는”을 선택할 수 있습니다. 이렇게 함으로써 모델은 해당 프롬프트 이후에 이어질 문장에 대한 정보를 갖게 됩니다.

그러나 시작 토큰은 프롬프트의 일부로서만 사용되는 것은 아닙니다. 시작 토큰은 문장의 특정 부분이나 상황을 나타내기 위해 임의로 선택될 수도 있습니다. 예를 들어, “오늘은”이라는 시작 토큰을 사용하여 모델에게 “오늘은 어떤 일이 일어날까?”와 같은 질문을 시작할 수 있습니다. 이 경우 시작 토큰은 프롬프트의 일부가 아니라, 문장의 시작에 특정한 의미를 부여하는 역할을 합니다.

따라서 시작 토큰은 프롬프트에 기반하여 선택될 수도 있고, 원하는 문장의 의도나 상황에 따라 임의로 선택될 수도 있습니다. 사용자는 상황에 맞게 시작 토큰을 선택하여 모델에게 원하는 정보를 전달할 수 있습니다.

시작 토큰을 적절하게 만들기 위해서는 다음과 같은 방법을 고려할 수 있습니다:

1. 문맥과 목적에 맞는 단어 선택: 시작 토큰은 문장의 시작을 나타내는 역할을 합니다. 따라서 해당 문장의 문맥과 목적에 맞는 단어를 선택하는 것이 중요합니다. 예를 들어, 자연어 처리 모델에서 “질문”을 생성하기 위한 프롬프트로 시작할 때, “질문을”이라는 시작 토큰을 선택할 수 있습니다.

2. 특수 토큰 활용: 시작 토큰으로 특수한 의미를 갖는 토큰을 사용하는 것도 좋은 방법입니다. 예를 들어, “CLS”라는 토큰은 일반적으로 시작 토큰으로 사용되는데, 이는 “분류(Classification)” 작업에 주로 활용되는 토큰입니다. 모델에게 문장의 시작과 관련된 정보를 알려주는 역할을 할 수 있습니다.

3. 사용자 정의: 시작 토큰은 모델과 작업에 따라 다양한 방식으로 정의될 수 있습니다. 사용자는 자신의 데이터와 목적에 맞게 시작 토큰을 정의할 수 있습니다. 예를 들어, 특정 도메인에서 작업하는 경우, 해당 도메인에 특화된 시작 토큰을 정의하여 사용할 수 있습니다.

시작 토큰을 적절하게 만들기 위해서는 문맥을 고려하고 원하는 의도를 모델에게 전달할 수 있는 단어나 토큰을 선택하는 것이 중요합니다. 데이터의 특성과 작업의 목적에 맞게 시작 토큰을 선택하고, 이를 모델에 적용하여 원하는 결과를 얻을 수 있습니다.

아래 코드에서는 `tokenizer.decode()` 함수를 사용하여 디코딩 작업을 수행하고 있습니다.

decoded = []
for i, t in enumerate(tokens.tolist()):
# cut to max gen len
t = t[: len(prompt_tokens[i]) + max_gen_len]
# cut to eos tok if any
try:
t = t[: t.index(self.tokenizer.eos_id)]
except ValueError:
pass
decoded.append(self.tokenizer.decode(t))
return decoded

`self.tokenizer.decode(t)` 함수를 호출하여 `t`를 디코딩하고, 디코딩된 결과를 `decoded` 리스트에 추가하고 있습니다. 따라서 해당 코드는 함수를 사용하여 디코딩을 수행하고 있습니다.

reshape(-1) – 해당 차원의 크기를 다른 차원의 크기에 따라 자동으로 조정하여 텐서의 구조를 유지

이 개념은 샵투스쿨의 “트랜스포머 모델로 GPT만들기” 학습 중 수강생분들이 더 자세히 알고 싶어하시는 용어들을 설명한 것입니다.

`reshape(-1)`은 해당 차원의 크기를 자동으로 조정하는데, 기준으로는 다른 차원의 크기를 유지하면서 조정됩니다.

예를 들어, 크기가 (2, 3, 1)인 3차원 텐서를 생각해봅시다.* 하단 설명 참고

“`
[[[1],
[2],
[3]],

[[4],
[5],
[6]]]
“`

여기서 `reshape(-1)`을 적용하면, 첫 번째 차원의 크기를 자동으로 조정하면서 다른 차원은 유지됩니다. 결과는 다음과 같습니다.

“`
[1, 2, 3, 4, 5, 6]
“`

즉, `reshape(-1)`은 해당 차원의 크기를 다른 차원의 크기에 따라 자동으로 조정하여 텐서의 구조를 유지하면서 편리한 연산을 가능하게 합니다.

 

*(크기가 (2, 3, 1)인 3차원 텐서는 다음과 같은 의미를 가집니다:

– 2: 첫 번째 차원의 크기는 2입니다. 이는 텐서가 2개의 요소(예: 문장, 문장)를 포함한다는 것을 의미합니다.
– 3: 두 번째 차원의 크기는 3입니다. 이는 각 요소가 3개의 하위 요소(예: 단어)로 구성되어 있다는 것을 의미합니다.
– 1: 세 번째 차원의 크기는 1입니다. 이는 각 하위 요소가 1개의 값(예: 숫자)으로 표현된다는 것을 의미합니다.

따라서, 크기가 (2, 3, 1)인 3차원 텐서는 2개의 문장을 포함하고, 각 문장은 3개의 단어로 구성되며, 각 단어는 1개의 숫자로 표현된다는 것을 나타냅니다.)

텍스트 시퀀스를 예측하는 언어모델에서 마지막 차원을 연산하는 이유

이 개념은 샵투스쿨의 “트랜스포머 모델로 GPT만들기” 학습 중 수강생분들이 더 자세히 알고 싶어하시는 용어들을 설명한 것입니다.

예를 들어, 텍스트 시퀀스를 예측하는 언어모델을 가정해봅시다. 이 모델은 문장의 각 단어에 대한 다음 단어를 예측하는 작업을 수행합니다.

문장 “I love to”가 주어졌을 때, 모델은 “I love to” 다음에 올 단어를 예측해야 합니다. 이때, 토큰 “I”, “love”, “to”는 시퀀스의 마지막 차원에 위치합니다.

마지막 차원에서의 연산을 통해 각 단어에 대한 예측을 수행할 수 있습니다. 예를 들어, 로짓 텐서는 다음과 같을 수 있습니다:

“`
logits = [[-1.2, 0.8, 2.5, -0.5],
[1.0, -0.3, 0.5, 1.2],
[0.5, 2.3, -0.7, 1.8]]
“`

각 행은 문장의 위치(토큰)에 해당하고, 열은 각 토큰에 대한 예측 값을 나타냅니다. 마지막 차원에서의 연산을 수행하면, 각 행(토큰 위치)에서 가장 큰 예측 값을 얻을 수 있습니다.

`torch.argmax` 함수를 사용하여 마지막 차원에서 최댓값을 가지는 인덱스를 찾으면 다음과 같이 될 수 있습니다:

“`
next_token = torch.argmax(logits, dim=-1)
“`

위 예에서 `next_token`은 각 행(토큰 위치)에서 가장 큰 예측 값을 가진 인덱스를 가지고 있게 됩니다. 이를 통해 “I love to” 다음에 오는 토큰을 예측할 수 있습니다.

따라서, 마지막 차원에서의 연산을 수행하여 각 위치(토큰)에서 예측 값을 얻을 수 있습니다.

텐서의 마지막 차원에 “I”, “love”, “to”라는 단어가 위치하는 이유는 텍스트를 표현하기 위한 일반적인 방식 중 하나인 원-핫 인코딩(one-hot encoding)을 사용하기 때문입니다.

원-핫 인코딩은 단어를 벡터로 표현하는 방법 중 하나로, 각 단어를 고유한 인덱스로 매핑한 후, 해당 단어의 인덱스에 해당하는 위치만 1로 표시하고 나머지 위치는 0으로 표시하는 벡터로 표현합니다.

예를 들어, “I”, “love”, “to”라는 단어를 인덱스로 매핑하면, “I”는 인덱스 0, “love”는 인덱스 1, “to”는 인덱스 2가 됩니다. 그리고 각 단어를 원-핫 인코딩하여 표현하면 다음과 같습니다:

“I” => [1, 0, 0]
“love” => [0, 1, 0]
“to” => [0, 0, 1]

이렇게 각 단어를 원-핫 인코딩하여 표현하면, 각 단어는 텐서의 마지막 차원에 위치하게 됩니다. 마지막 차원의 크기는 전체 단어 집합의 크기와 동일하며, 각 위치(인덱스)는 해당 단어를 나타냄을 의미합니다.

이러한 표현 방식을 사용하면 모델이 단어를 구분하고 예측하기 쉽습니다. 모델은 마지막 차원에서 각 위치에 해당하는 값들을 활용하여 예측을 수행하거나 다른 연산을 수행할 수 있습니다.

 

소프트맥스 함수는 주어진 로짓 값들을 확률 분포로 변환하기 위해 마지막 차원을 이용합니다. 이때 마지막 차원에는 각 단어에 대한 확률 정보가 들어 있기 때문에, 소프트맥스 함수는 해당 차원의 값을 정규화하여 각 단어에 대한 확률을 계산합니다.

일반적으로, 로짓 값은 각 단어가 선택될 가능성을 나타내는 수치로 해석될 수 있습니다. 마지막 차원은 각 단어에 대한 확률 정보가 위치한 차원이기 때문에, 소프트맥스 함수는 해당 차원의 값을 정규화하여 각 단어에 대한 확률을 계산합니다.

앞선 차원들은 문장의 길이나 다른 문맥 정보와 관련된 정보를 포함할 수 있습니다. 예를 들어, 입력 문장의 단어 순서나 구조 등과 관련된 정보는 앞선 차원에서 표현될 수 있습니다. 그러나 토큰 예측을 위한 로짓 값은 마지막 차원에서 확률 분포로 변환되기 때문에, 소프트맥스 함수는 주로 마지막 차원을 이용하여 확률 분포를 계산합니다.

logits 란 – 모델의 출력값으로, 토큰 예측에 대한 점수 또는 확률을 나타내는 값

이 개념은 샵투스쿨의 “트랜스포머 모델로 GPT만들기” 학습 중 수강생분들이 더 자세히 알고 싶어하시는 용어들을 설명한 것입니다.

 

`logits`는 모델의 출력값으로, 다음 토큰을 예측하기 위해 각 토큰에 대한 점수 또는 확률을 나타내는 값입니다. 로짓은 일반적으로 소프트맥스 함수를 거치기 전의 값이며, 토큰의 예측 확률을 나타내는 확률 분포로 변환되기 전의 상대적인 스칼라 값입니다.

일반적으로 로짓 값은 모델의 출력 레이어의 결과로 얻어지며, 각 토큰에 대한 점수 또는 확률을 나타내는 벡터 형태일 수도 있습니다. 이 값은 모델이 학습을 통해 입력 시퀀스와 관련하여 다음 토큰의 예측을 수행한 결과입니다.

예를 들어, 언어 모델에서 로짓 값은 주어진 이전 토큰들을 기반으로 다음 토큰을 예측하기 위해 계산됩니다. 각 토큰은 해당 위치에서의 예측 확률 또는 점수로 나타내어질 수 있습니다. 이를 통해 모델은 가능한 다음 토큰을 예측하고, 문장을 생성하거나 다음 단어를 선택하는 등의 작업을 수행할 수 있습니다.

따라서, `logits`는 모델의 출력값으로, 토큰 예측에 대한 점수 또는 확률을 나타내는 값입니다.

로짓은 일반적으로 소프트맥스 함수를 거치는 이유는 토큰의 예측 확률을 얻기 위해서입니다.

로짓은 원래 선형 공간에서 토큰에 대한 점수나 확률을 나타내는 값입니다. 그러나 이러한 로짓 값은 범위에 제한이 없으며, 직접적으로 해석하기가 어렵습니다. 따라서, 로짓 값을 확률로 변환하여 토큰 예측을 더 직관적이고 해석하기 쉽게 만들기 위해 소프트맥스 함수를 사용합니다.

소프트맥스 함수는 로짓 값을 입력으로 받아 해당 값들을 0과 1 사이의 확률로 변환합니다. 이 함수는 각 로짓 값을 모든 로짓 값의 합으로 나누어 확률 분포를 생성합니다. 결과적으로, 소프트맥스 함수를 거친 확률 분포에서 각 토큰은 해당 토큰이 다음에 올 확률을 나타내는 값을 가지게 됩니다.

소프트맥스 함수를 사용하여 로짓 값을 확률로 변환하면, 예측 결과를 더 쉽게 이해하고 해석할 수 있습니다. 또한, 확률 분포를 통해 모델이 다양한 토큰을 고려하고 선택할 수 있도록 하여 문장 생성이나 다음 단어 예측과 같은 작업에서 다양성을 제공할 수 있습니다.

따라서, 소프트맥스 함수를 거치는 것은 로짓 값을 토큰 예측에 대한 확률 분포로 변환하여 예측 결과를 해석하기 쉽고 다양성을 제공하기 위한 것입니다.

자연어 처리에서 문장을 생성한다는 것은 토큰을 예측하는 것

문장을 생성하는 과정은 토큰을 예측하는 과정과 밀접한 관련이 있습니다. 문장 생성은 주어진 모델이 이전 토큰들을 기반으로 다음 토큰을 예측하여 새로운 토큰을 생성하는 과정입니다.

일반적으로 자연어 처리 모델은 이전에 생성된 토큰 시퀀스를 입력으로 받아 다음 토큰을 예측하는 작업을 수행합니다. 예를 들어, 주어진 문장 “I love” 다음에 올 단어를 예측한다고 가정해봅시다. 모델은 “I love”라는 토큰 시퀀스를 입력으로 받아 다음에 올 단어를 예측합니다. 이때, 예측된 다음 단어는 문장 생성을 위한 새로운 토큰으로 사용될 수 있습니다. 이러한 과정을 반복하여 모델이 원하는 길이의 문장을 생성할 수 있습니다.

따라서, 문장을 생성하는 과정은 모델이 이전 토큰들을 기반으로 다음 토큰을 예측하는 작업을 수행하는 것으로 볼 수 있습니다. 이렇게 예측된 토큰들을 조합하여 완전한 문장을 생성할 수 있습니다.

토큰을 예측하기 위해서 모델은 로짓과 온도를 활용

문장을 생성하는 과정에서 토큰을 예측하기 위해서 모델은 로짓과 온도를 활용합니다.

로짓은 모델의 출력 값으로, 각 토큰에 대한 점수나 확률을 나타냅니다. 모델은 이 로짓 값을 기반으로 다음에 올 토큰을 예측합니다. 로짓 값이 높을수록 해당 토큰이 선택될 확률이 높아집니다.

온도는 로짓 값을 조절하기 위한 파라미터로, 로짓 값을 나누는 연산에 사용됩니다. 온도가 높을수록 로짓 값들 사이의 차이가 줄어들어 예측 확률이 균등해집니다. 반대로, 온도가 낮을수록 로짓 값들 사이의 차이가 더 커져서 높은 로짓 값을 가진 토큰이 선택될 확률이 더 높아집니다.

따라서, 모델은 주어진 로짓 값과 온도를 활용하여 다음에 올 토큰을 예측합니다. 온도를 조절하면 예측 확률의 분포가 변화하므로, 다양한 예측 결과를 얻을 수 있습니다. 이렇게 예측된 토큰은 문장을 구성하는 단위로 활용되어 완전한 문장을 생성할 수 있게 됩니다.

온도를 통해 로짓 값들 사이의 차이가 어떻게 조절되는지를 예를 통해 설명해드리겠습니다.

예를 들어, 다음과 같은 로짓 값들을 가진 경우를 생각해봅시다:

로짓 값: [2.0, 1.0, 0.5]

1. 온도가 높은 경우 (예: 온도 = 1.0)
– 로짓 값을 온도로 나눠줍니다: [2.0 / 1.0, 1.0 / 1.0, 0.5 / 1.0] = [2.0, 1.0, 0.5]
– 로짓 값들은 변하지 않고 그대로 유지됩니다.
– 로짓 값들 사이의 차이가 그대로 유지되므로, 예측 확률은 로짓 값들과 동일한 상대적인 크기를 가집니다. 즉, 각 토큰에 대한 예측 확률은 [0.5, 0.3, 0.2]가 됩니다. 이는 로짓 값들 사이의 상대적인 비율을 유지한 확률 분포를 갖게 됩니다.

2. 온도가 낮은 경우 (예: 온도 = 0.5)
– 로짓 값을 온도로 나눠줍니다: [2.0 / 0.5, 1.0 / 0.5, 0.5 / 0.5] = [4.0, 2.0, 1.0]
– 로짓 값들이 더 큰 값으로 확대되었습니다.
– 로짓 값들 사이의 차이가 더 크므로, 예측 확률은 로짓 값들과의 상대적인 차이가 더 크게 반영됩니다. 즉, 각 토큰에 대한 예측 확률은 [0.571, 0.286, 0.143]가 됩니다. 로짓 값이 가장 큰 토큰에 대한 확률이 상대적으로 크게 높아지게 됩니다.

따라서, 온도가 높을수록 로짓 값들 사이의 차이가 줄어들어 예측 확률이 균등해지고, 온도가 낮을수록 로짓 값들 사이의 차이가 더 커져서 높은 로짓 값을 가진 토큰이 선택될 확률이 더 높아집니다. 이는 온도를 조절하여 다양한 예측 결과를 얻을 수 있는 중요한 메커니즘입니다.

확률적인 방법과 확실한 방법 중 하나를 선택하여 다음 토큰을 예측

확률적인 방법과 확실한 방법 중 하나를 선택하여 다음 토큰을 예측하는 이유는 예측의 다양성과 정확성을 조절하기 위해서입니다.

확률적인 방법을 선택하는 경우, 온도(temperature)가 높을 때 토큰 예측에 확률 분포를 사용하여 다양한 토큰을 선택할 수 있습니다. 이는 예측 결과에 다양성을 부여하고, 생성되는 문장이 더 다양하고 창의적일 수 있게 합니다. 예를 들어, 같은 문맥에서 여러 번 실행하더라도 항상 동일한 토큰이 선택되는 것을 피할 수 있습니다. 따라서, 다양한 문장을 생성하고 싶을 때 확률적인 방법을 사용할 수 있습니다.

반면에, 확실한 방법을 선택하는 경우, 온도가 낮을 때 가장 높은 로짓 값을 가진 토큰을 선택하여 예측합니다. 이는 예측의 정확성을 높이는데 도움을 줄 수 있습니다. 가장 확률이 높은 토큰을 선택함으로써 모델이 가장 자신 있는 예측을 할 수 있게 되며, 생성된 문장의 품질을 높일 수 있습니다. 예를 들어, 정확한 번역이나 문법적으로 올바른 문장을 생성하는 경우에는 확실한 방법을 사용할 수 있습니다.

따라서, 확률적인 방법과 확실한 방법을 선택하여 다음 토큰을 예측함으로써 예측의 다양성과 정확성을 조절할 수 있습니다. 이는 생성된 문장의 특성과 사용자의 요구에 맞게 예측 방법을 조정하는데 도움을 줍니다.

torch.where() 함수

이 개념은 샵투스쿨의 “트랜스포머 모델로 GPT만들기” 학습 중 수강생분들이 더 자세히 알고 싶어하시는 용어들을 설명한 것입니다.

`torch.where()` 함수는 조건에 따라 두 개의 값 중 하나를 선택하는 역할을 합니다. 일반적으로 다음과 같은 형식을 가지고 있습니다:

“`python
torch.where(condition, x, y)
“`

– `condition`: 조건 텐서입니다. 이는 같은 모양(shape)을 가진 불리언(True/False) 텐서입니다.
– `x`: `condition`이 True인 위치에서 선택되는 텐서입니다.
– `y`: `condition`이 False인 위치에서 선택되는 텐서입니다.

`torch.where()` 함수는 `condition`의 각 요소를 확인하고, 해당 위치에서 `x`의 값이 선택되거나 `y`의 값이 선택됩니다. 따라서 `x`와 `y`는 같은 모양을 가지고 있어야 합니다.

예를 들어, 다음과 같은 코드를 살펴봅시다:

“`python
import torch

a = torch.tensor([1, 2, 3, 4])
b = torch.tensor([10, 20, 30, 40])
condition = torch.tensor([True, False, True, False])

result = torch.where(condition, a, b)
print(result)
“`

위의 코드에서 `condition`은 `[True, False, True, False]`이므로 첫 번째와 세 번째 위치에서는 `a`의 값이 선택되고, 두 번째와 네 번째 위치에서는 `b`의 값이 선택됩니다. 결과는 `[1, 20, 3, 40]`이 됩니다.

따라서 `torch.where()` 함수는 조건에 따라 두 개의 값을 선택하는 유용한 함수로, 다양한 상황에서 유연한 값을 선택하기 위해 사용됩니다.

입력 토큰의 패딩 값 – 길이때문에 추가하지만 무시해야 하는 값

이 개념은 샵투스쿨의 “트랜스포머 모델로 GPT만들기” 학습 중 수강생분들이 더 자세히 알고 싶어하시는 용어들을 설명한 것입니다.

입력 토큰의 패딩 값은 시퀀스의 길이를 동일하게 맞추기 위해 추가되는 임의의 특정 값입니다. 패딩은 일반적으로 모든 시퀀스 중 가장 긴 시퀀스와 동일한 길이로 맞추기 위해 사용됩니다. 이는 배치 처리나 모델의 입력으로 일정한 크기의 텐서를 사용해야 하는 경우에 특히 유용합니다.

패딩 값을 사용하여 시퀀스의 길이를 맞추면 모델은 모든 입력 시퀀스를 동일한 크기로 처리할 수 있습니다. 패딩은 실제 데이터와 구분하기 위해 일반적으로 특별한 식별자 또는 숫자로 표시됩니다. 예를 들어, 자연어 처리에서는 일반적으로 패딩 값으로 0을 사용합니다.

모델이 패딩 토큰을 인식하고 무시할 수 있도록 입력 토큰의 패딩 값은 마스킹이나 특별한 처리를 통해 표시되고 처리됩니다. 이를 통해 모델은 패딩에 영향을 받지 않고 실제 데이터에만 집중할 수 있습니다.

시퀀스의 길이가 서로 다른 예시로는 문장의 단어 수가 다른 경우를 들 수 있습니다. 예를 들어, 다음과 같은 두 개의 문장이 있다고 가정해 봅시다:

– 문장 1: “나는 공부를 합니다.”
– 문장 2: “나는 맛있는 음식을 좋아합니다.”

위의 두 문장은 단어 수가 다릅니다. 첫 번째 문장은 4개의 단어로 구성되어 있고, 두 번째 문장은 6개의 단어로 구성되어 있습니다. 이러한 경우에 각 문장을 모델에 입력으로 전달하려면 길이가 동일하도록 맞춰야 합니다.

따라서 패딩 값을 사용하여 길이를 맞추는 것이 일반적입니다. 예를 들어, 길이가 더 짧은 문장을 패딩 토큰으로 채워서 동일한 길이로 맞출 수 있습니다. 이렇게 하면 다음과 같은 결과를 얻을 수 있습니다:

– 문장 1: “나는 공부를 합니다.” -> “나는 공부를 합니다. [PAD] [PAD]”
– 문장 2: “나는 맛있는 음식을 좋아합니다.” -> “나는 맛있는 음식을 좋아합니다.”

이제 두 문장의 길이가 모두 6개의 토큰으로 동일하게 맞춰졌습니다. 이렇게 동일한 길이의 시퀀스를 사용하면 모델이 일관된 입력을 받을 수 있으며, 배치 처리와 메모리 관리 등의 효율성을 높일 수 있습니다.

입력 토큰의 패딩값을 무시하는 것과 실제 처리에서 패딩값을 주는 상황은 다음과 같이 예를 들 수 있습니다:

가정해보겠습니다. 우리는 영화 리뷰 분류 모델을 만들고자 합니다. 각 리뷰는 텍스트 시퀀스로 표현되며, 모델에 입력하기 전에 시퀀스의 길이를 일정하게 맞추기 위해 패딩을 적용해야 합니다. 패딩을 적용하면 모든 리뷰 시퀀스의 길이가 동일해지는데, 이를 위해 패딩 토큰을 사용합니다.

일상생활에서는 사용자가 짧은 리뷰를 작성할 때에도 시퀀스 길이를 맞추기 위해 패딩을 추가할 수 있습니다. 예를 들어, 사용자가 “좋아요”라는 간단한 리뷰를 작성한다고 가정해봅시다. 그러나 리뷰의 최소 길이가 10 단어여야 한다는 규칙이 있어서 패딩을 추가해야 하는 상황입니다. 따라서 “좋아요”라는 리뷰에 패딩 토큰을 추가하여 “좋아요 [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]”와 같이 10 단어로 만들 수 있습니다.

이 경우, 모델은 입력 토큰에서 패딩 토큰을 무시하도록 학습되어야 합니다. 패딩 토큰은 실제 리뷰의 의미를 나타내지 않으며, 모델은 패딩 토큰을 통해 학습하면 안 되기 때문입니다. 따라서 모델은 패딩 토큰을 무시하고 실제 리뷰의 내용에 집중하여 예측을 수행하게 됩니다.

이와 같이 패딩 값을 무시하고 실제 처리에는 사용하지 않는 것은 입력 데이터의 크기를 통일하기 위한 필수적인 과정입니다. 패딩 토큰은 모델이 실제 데이터에 집중하도록 도와주는 역할을 합니다.

입력 토큰과 패딩 토큰을 비교하는 코드는 다양한 방법으로 작성될 수 있습니다. 일반적으로는 다음과 같은 방법을 사용할 수 있습니다:

1. NumPy를 사용한 방법:
“`python
import numpy as np

# 입력 토큰과 패딩 토큰 비교
input_tokens = np.array([…]) # 입력 토큰 배열
padding_token = 0 # 패딩 토큰 값
mask = input_tokens != padding_token # 비교 연산

# 결과 확인
print(mask)
“`

2. PyTorch를 사용한 방법:
“`python
import torch

# 입력 토큰과 패딩 토큰 비교
input_tokens = torch.tensor([…]) # 입력 토큰 텐서
padding_token = 0 # 패딩 토큰 값
mask = input_tokens != padding_token # 비교 연산

# 결과 확인
print(mask)
“`

위의 코드에서 `input_tokens`은 입력 토큰을 나타내는 배열 또는 텐서입니다. `padding_token`은 패딩 토큰의 값이며, 이 값과 입력 토큰을 비교하여 `mask`를 생성합니다. `mask`는 같은 크기의 배열 또는 텐서로 반환되며, 입력 토큰과 패딩 토큰이 다른 위치에서 `True`로 표시됩니다.

실제로 사용되는 값들은 예시로 주어진 것이며, 실제 코드에서는 해당 데이터에 맞게 입력 토큰과 패딩 토큰의 값, 데이터 유형 등을 설정해야 합니다.

torch.full() 함수 – 주어진 크기의 텐서를 특정 값으로 채워줌

`torch.full()` 함수는 주어진 크기(size)의 새로운 텐서를 생성하고 모든 요소를 지정된 값(fill_value)으로 채웁니다.

함수 시그니처는 다음과 같습니다:

torch.full(size, fill_value, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor

– `size`: 텐서의 크기를 나타내는 정수 또는 튜플입니다.
– `fill_value`: 텐서의 모든 요소에 할당할 값입니다.
– `dtype` (선택적): 텐서의 데이터 유형을 나타내는 torch.dtype 객체입니다. 기본값은 None이며, 이 경우에는 입력값(fill_value)의 데이터 유형이 사용됩니다.
– `layout` (선택적): 텐서의 레이아웃을 나타내는 torch.layout 열거형입니다. 기본값은 `torch.strided`입니다.
– `device` (선택적): 텐서가 생성될 장치를 지정하는 torch.device 객체입니다. 기본값은 None이며, 이 경우에는 현재 기본 장치가 사용됩니다.
– `requires_grad` (선택적): 텐서가 기울기(gradient) 계산을 지원해야 하는지 여부를 나타내는 불리언 값입니다. 기본값은 False입니다.
– `pin_memory` (선택적): 텐서를 핀 메모리(pinned memory)에 할당해야 하는지 여부를 나타내는 불리언 값입니다. 기본값은 False입니다.

`torch.full()` 함수를 사용하면 주어진 크기의 텐서를 특정 값으로 채우는 것이 간단하고 편리해집니다. 예를 들어, `torch.full((3, 4), 5)`는 3×4 크기의 텐서를 생성하고 모든 요소를 5로 채웁니다.

SentencePiece 라이브러리 – 텍스트입력을 숫자로 쉽게 바꿔주는 토큰제작 오픈소스 라이브러리

SentencePiece는 Google에서 개발한 오픈 소스 라이브러리로, 텍스트 데이터를 효율적으로 토큰화하기 위해 사용됩니다. SentencePiece는 단어나 음절 단위 등 다양한 기준으로 텍스트를 토큰으로 분할할 수 있으며, 주로 자연어 처리 작업에서 언어 모델링, 기계 번역, 텍스트 분류 등에 활용됩니다.

SentencePiece의 주요 특징과 기능은 다음과 같습니다:

1. **Subword 기반 분할**: SentencePiece는 단어 수준이 아닌 subword 수준에서 텍스트를 분할합니다. 이를 통해 미등록어(out-of-vocabulary)나 희귀한 단어에 대한 효과적인 처리가 가능합니다. 또한, 다양한 언어의 특성을 고려하여 유연한 토큰화 방식을 제공합니다.

2. **양방향 토큰화**: SentencePiece는 양방향 토큰화(Bidirectional Tokenization)를 지원합니다. 이는 앞뒤 문맥을 동시에 고려하여 토큰을 생성하므로, 문맥 정보가 보존되는 장점이 있습니다.

3. **유니코드 지원**: SentencePiece는 다양한 유니코드 문자를 지원하며, 다국어 텍스트에 대한 효율적인 처리가 가능합니다.

4. **학습 데이터 생성**: SentencePiece는 기존의 텍스트 데이터로부터 토크나이저 학습 데이터를 생성할 수 있는 기능을 제공합니다. 이를 통해 사용자 정의 토크나이저를 학습할 수 있습니다.

5. **사전 크기 제어**: SentencePiece는 사용자가 지정한 사전 크기를 제한하여 메모리 사용량을 조절할 수 있습니다. 이를 통해 대규모 데이터셋에 대한 효율적인 토큰화 처리가 가능합니다.

SentencePiece는 다양한 프로그래밍 언어에서 사용할 수 있으며, Python에서는 `sentencepiece` 라이브러리를 통해 쉽게 활용할 수 있습니다. SentencePiece를 통해 텍스트를 효율적으로 토큰화하면, 자연어 처리 작업에서 높은 성능과 유연성을 기대할 수 있습니다.

CUDA(Compute Unified Device Architecture) – 병렬 컴퓨팅 플랫폼

CUDA는 “Compute Unified Device Architecture”의 약자로, NVIDIA가 개발한 병렬 컴퓨팅 플랫폼입니다. CUDA는 GPU(그래픽 처리 장치)를 사용하여 병렬 컴퓨팅 작업을 수행할 수 있도록 하는 프로그래밍 모델과 소프트웨어 개발 도구를 제공합니다.

CUDA를 사용하면 일반적으로 그래픽 처리에 사용되는 GPU를 과학 및 공학 계산, 딥 러닝, 빅 데이터 분석 등의 고성능 컴퓨팅 작업에 활용할 수 있습니다. GPU는 많은 수의 코어를 가지고 있으며, 병렬 처리를 위해 설계되어 있기 때문에 대량의 데이터를 동시에 처리할 수 있습니다. CUDA는 이러한 GPU의 병렬 처리 능력을 활용하여 계산 작업을 가속화하고 성능을 향상시킬 수 있는 도구와 라이브러리를 제공합니다.

CUDA는 CUDA Toolkit을 통해 개발자들에게 GPU 프로그래밍 환경을 제공하며, CUDA 언어를 사용하여 GPU 위에서 실행될 커널 함수를 작성할 수 있습니다. 또한, CUDA는 다양한 프로그래밍 언어와 프레임워크 (예: C/C++, Python, TensorFlow, PyTorch 등)와의 통합을 지원하여 GPU를 활용한 고성능 병렬 컴퓨팅을 보다 쉽게 구현할 수 있도록 합니다.

 

CUDA 를 python 에서 사용하는 방법

Python에서 CUDA를 사용하기 위해서는 다음과 같은 단계를 따릅니다:

1. CUDA 지원 GPU 확인: 먼저, 시스템에 CUDA를 지원하는 NVIDIA GPU가 있는지 확인해야 합니다. NVIDIA의 공식 웹사이트에서 지원되는 GPU 목록을 확인할 수 있습니다.

2. NVIDIA 드라이버 설치: 시스템에 NVIDIA GPU가 있는 경우, 해당 GPU를 제대로 활용하기 위해 NVIDIA 드라이버를 설치해야 합니다. NVIDIA의 공식 웹사이트에서 드라이버를 다운로드하여 설치할 수 있습니다.

3. CUDA Toolkit 설치: CUDA Toolkit은 CUDA 개발 환경을 제공하는 소프트웨어 패키지입니다. CUDA Toolkit을 다운로드하고 설치해야 합니다. CUDA Toolkit에는 CUDA 라이브러리와 개발 도구, 컴파일러 등이 포함되어 있습니다.

4. CUDA 지원 라이브러리 설치: CUDA를 사용하는 Python 패키지를 설치해야 합니다. 대표적으로 PyTorch, TensorFlow, Numba 등이 있습니다. 이러한 패키지는 CUDA를 사용하여 GPU 가속화된 연산을 수행할 수 있도록 지원합니다.

5. CUDA 환경 설정: CUDA 설치 후, CUDA 환경 변수를 설정해야 합니다. 이는 시스템의 PATH 및 LD_LIBRARY_PATH 변수를 적절히 설정하여 CUDA를 사용하는 라이브러리 및 실행 파일에 액세스할 수 있도록 합니다.

6. CUDA 코드 작성 및 실행: 이제 Python에서 CUDA를 사용할 준비가 되었습니다. CUDA를 사용하는 코드를 작성하고, CUDA 지원 라이브러리를 import하여 GPU 가속화된 작업을 수행할 수 있습니다.

주의: CUDA는 NVIDIA GPU에서만 작동하므로, 시스템에 NVIDIA GPU가 있어야 합니다. 또한, CUDA를 사용하기 위해선 해당 GPU가 호환되는 CUDA Compute Capability를 갖추고 있어야 합니다.